Lösungen der Übungsaufgaben Analysis 1 (Serie 10) Studiengang Network Computing WS 2004/2005

Martin Grandrath (Matr. Nr.: 46375)

6. Januar 2005

1 Metrischer Raum

1.1

$$\begin{split} d\Big((101101),(100001)\Big) &= (2^{-1}|1-1|) + (2^{-2}|0-0|) + (2^{-3}|1-0|) + (2^{-4}|1-0|) + \\ &\quad + (2^{-5}|0-0|) + (2^{-6}|1-1|) \\ &= \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 0 + \frac{1}{8} \cdot 1 + \frac{1}{16} \cdot 1 + \frac{1}{32} \cdot 0 + \frac{1}{64} \cdot 0 \\ &= \frac{1}{8} + \frac{1}{16} \\ &= \frac{3}{16} \end{split}$$

1.2

1.2.1 r = 0, 25

- Damit ein Punkt von (101010) einen Abstand $d \le 0, 25 = \frac{1}{4}$ hat, muss das erste Glied der Reihe Null sein.
 - \curvearrowright Es kommen nur Punkte der Form $(1 x_2 x_3 x_4 x_5 x_6)$ in Frage.
- Falls das zweite Glied der Reihe $\frac{1}{4}$ ist (d.h. $x_2 = 1$), müssen alle folgenden Glieder Null sein.

$$x_2 = 1 \longrightarrow x_3 = x_5 = 1 \land x_4 = x_6 = 0$$

 (111010) liegt innerhalb der Kugel.

• Falls $x_2 = 0$, können die restlichen Glieder in der Summe maximal $\frac{15}{64} \approx 0,23 < 0,25$ ergeben. D.h. die restlichen Glieder spielen dann keine Rolle mehr.

 \sim Alle Punkte der Form $(10x_3x_4x_5x_6)$ liegen innerhalb der Kugel.

 \curvearrowright Es liegen $2^4+1=17$ Punkte innerhalb der abgeschlossenen Kugel.

1.2.2 r = 0.03

Damit ein Punkt von (101010) einen Abstand $d \leq 0,03$ hat, müssen alle Glieder der Reihe bis auf das letzte Null sein, d.h. es liegen genau zwei Punkte der Form (10101 x_6) innerhalb der abgeschlossenen Kugel.

1.3

Der maximale Abstand, den zwei Punkte haben können, beträgt

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} = \frac{32 + 16 + 8 + 4 + 2 + 1}{64} = \frac{63}{64} < 1$$

1.4

Axiome des metrischen Raumes:

- 1. $\forall x, y : d(x, y) \ge 0, d(x, y) = 0 \longrightarrow x = y$
 - Da jedes einzelne Glied der Reihe positiv ist $(\frac{1}{2^k} + |x_k y_k|, k \in \{1, ..., 6\})$, muss auch die Gesamtsumme positiv sein.
 - Das einzelne Glied der Reihe ist genau dann Null, wenn $|x_k y_k|$ Null ist. Die Gesamtsumme ist dann Null, wenn $x_k = y_k$ für alle $k \in \{1, ..., 6\}$. Dies ist genau dann der Fall, wenn x = y.
- 2. $\forall x, y : d(x, y) = d(y, x)$

$$d(x,y) = \sum_{k=1}^{6} 2^{-k} |x_k - y_k|$$
$$= \sum_{k=1}^{6} 2^{-k} |y_k - x_k|$$
$$= d(y,x)$$

3.
$$\forall x, y, z : d(x, z) \leq d(x, y) + d(y, z)$$

Seien $x, y, z \in X$

$$\sum_{k=1}^{6} 2^{-k} |x_k - y_k| + \sum_{k=1}^{6} 2^{-k} |y_k - z_k| \geq \sum_{k=1}^{6} 2^{-k} |x_k - z_k|$$

$$\sum_{k=1}^{6} 2^{-k} \left(|x_k - y_k| + |y_k - z_k| \right) - \sum_{k=1}^{6} 2^{-k} |x_k - z_k| \geq 0$$

$$\sum_{k=1}^{6} 2^{-k} \left(\underbrace{|x_k - y_k| + |y_k - z_k|}_{\geq |x_k - z_k|} - |x_k - z_k| \right) \geq 0$$

1.5

Da für die Konvergenz einer Folge gegen a für $n \ge n_0$ und ein beliebig klein gewähltes ϵ gelten muss $d(x_n, a) < \epsilon$, d.h. unendlich viele Elemente innerhalb der ϵ -Umgebung und nur endlich viele außerhalb, muss die Folge deshalb ab einer gewissen Stelle konstant sein, da X nur endlich viele Elemente (2⁶) besitzt.

2 Funktionen

2.1

$$f: [1, +\infty) \to \mathbb{R}$$
 $f(x) = (x-3)^2$ $W_f = [0, +\infty)$

Die Funktion f ist

• nicht injektiv: f(2) = f(4) = 1, aber $2 \neq 4$

• nicht surjektiv: $W_f = [0, +\infty) \neq \mathbb{R} = Y$

2.2

$$f: [1,3] \to [0,4]$$
 $f(x) = (x-3)^2$ $W_f = [0,4]$

Die Funktion f ist

• injektiv:

$$f(x_1) = f(x_2)$$

$$(x_1 - 3)^2 = (x_2 - 3)^2$$

$$|x_1 - 3| = |x_2 - 3|$$

$$-x_1 + 3 = -x_2 + 3 \qquad (\text{da } 1 \le x \le 3 \iff -2 \le x - 3 \le 0)$$

$$x_1 = x_2$$

• surjektiv: $W_f = [0, 4] = Y$

2.3

$$f: [3, +\infty) \to \mathbb{R}$$
 $f(x) = (x-3)^2$
$$W_f = [0, +\infty)$$

Die Funktion f ist

• injektiv:

$$f(x_1) = f(x_2)$$

$$(x_1 - 3)^2 = (x_2 - 3)^2$$

$$|x_1 - 3| = |x_2 - 3|$$

$$x_1 - 3 = x_2 - 3 \qquad (\text{da } x \ge 3 \Leftrightarrow x - 3 \ge 0)$$

$$x_1 = x_2$$

• nicht surjektiv: $W_f = [0, +\infty) \neq \mathbb{R} = Y$

2.4

$$f: [1, +\infty) \to \mathbb{R}$$
 $f(x) = \frac{2 - \sqrt{x}}{2 + \sqrt{x}}$
$$W_f = \left(-1, \frac{1}{3}\right]$$

Die Funktion f ist

• injektiv:

$$f(x_1) = f(x_2)$$

$$\frac{2 - \sqrt{x_1}}{2 + \sqrt{x_1}} = \frac{2 - \sqrt{x_2}}{2 + \sqrt{x_2}}$$

$$(2 - \sqrt{x_1})(2 + \sqrt{x_2}) = (2 - \sqrt{x_2})(2 + \sqrt{x_1})$$

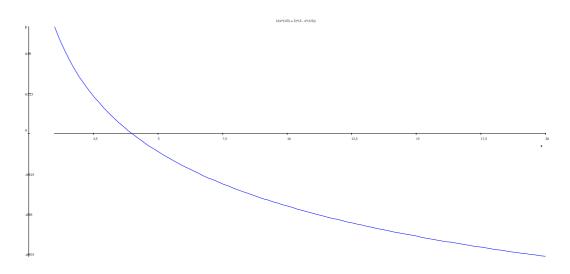
$$4 + 2\sqrt{x_2} - 2\sqrt{x_1} - \sqrt{x_1}\sqrt{x_2} = 4 + 2\sqrt{x_1} - 2\sqrt{x_2} - \sqrt{x_1}\sqrt{x_2}$$

$$4\sqrt{x_2} = 4\sqrt{x_1}$$

$$\sqrt{x_2} = \sqrt{x_1}$$

$$x_2 = x_1$$

• nicht surjektiv: $W_f = \left(-1, \frac{1}{3}\right] \neq \mathbb{R} = Y$

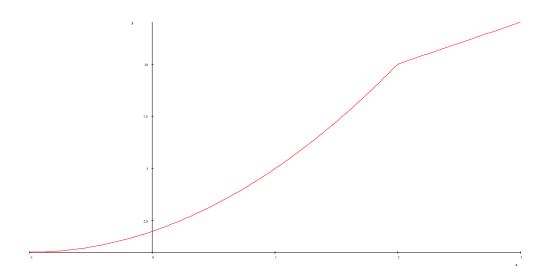


2.5

$$f: [-1,3] \to \mathbb{R}$$
 $f(x) = \begin{cases} (x+1)^2 + 1, & x \in [-1,2] \\ 2x + 6, & x \in [2,3] \end{cases}$ $W_f = [1,12]$

Die Funktion f ist

- injektiv: Beide Teilfunktionen sind streng monoton wachsend (siehe Graph)
- nicht surjektiv: $W_f = [1, 12] \neq \mathbb{R} = Y$



3 Umkehrfunktionen

3.1 Funktion aus (2.2)

$$f: [1,3] \to [0,4]$$
 $f(x) = (x-3)^2$
 $f^{-1}: [0,4] \to [1,3]$

$$x = (y-3)^{2}$$

$$\sqrt{x} = |y-3|$$

$$\sqrt{x} = -y+3 \qquad (\text{da } 1 \le y \le 3 \Leftrightarrow -2 \le y-3 \le 0)$$

$$f^{-1}(x) = y = 3 - \sqrt{x}$$

3.2 Funktion aus (2.3)

$$f: [3, +\infty) \to \mathbb{R} \qquad f(x) = (x-3)^2$$
$$W_f = [0, +\infty)$$
$$f^{-1}: [0, +\infty) \to [3, +\infty)$$

$$x = (y-3)^{2}$$

$$\sqrt{x} = |y-3|$$

$$\sqrt{x} = y-3 \qquad (\text{da } y \ge 3 \Leftrightarrow y-3 \ge 0)$$

$$f^{-1}(x) = y = \sqrt{x} + 3$$

3.3 Funktion aus (2.4)

$$f: [1, +\infty) \to \mathbb{R} \qquad f(x) = \frac{2 - \sqrt{x}}{2 + \sqrt{x}}$$
$$W_f = \left(-1, \frac{1}{3}\right]$$
$$f^{-1}: \left(-1, \frac{1}{3}\right] \to [1, +\infty)$$

$$x = \frac{2 - \sqrt{y}}{2 + \sqrt{y}}$$

$$x(2 + \sqrt{y}) = 2 - \sqrt{y}$$

$$2x + \sqrt{y}x - 2 + \sqrt{y} = 0$$

$$\sqrt{y}(x+1) + 2x - 2 = 0$$

$$\sqrt{y} = \frac{2 - 2x}{x+1}$$

$$f^{-1}(x) = y = \frac{4x^2 - 8x + 4}{x^2 + 2x + 1}$$

$$= \frac{4(x^2 - 2x + 1)}{x^2 + 2x + 1}$$

3.4 Funktion aus (2.5)

$$f: [-1,3] \to \mathbb{R}$$
 $f(x) = \begin{cases} (x+1)^2 + 1, & x \in [-1,2] \\ 2x+6, & x \in (2,3] \end{cases}$ $W_f = [1,12]$ $f^{-1}: [1,12] \to [-1,3]$

• 1. Teilfunktion

$$x = (y+1)^{2} + 1$$
$$y+1 = \sqrt{x-1}$$
$$y = \sqrt{x-1} - 1$$

• 2. Teilfunktion

$$x = 2y + 6$$
$$2y = x - 6$$
$$y = \frac{1}{2}x - 3$$

• Trennstelle

$$f(2) = (2+1)^{2} + 1$$

$$= 10$$

$$f^{-1}(x) = \begin{cases} \sqrt{x-1} - 1 & , x \in [1, 10] \\ \frac{1}{2}x - 3 & , x \in (10, 12] \end{cases}$$